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background: California children’s exposures to polybrominated diphenyl ether flame retardants 
(PBDEs) are among the highest worldwide. PBDEs are known endocrine disruptors and neuro
toxicants in animals.

objective: Here we investigate the relation of in utero and child PBDE exposure to neuro
behavioral development among participants in CHAMACOS (Center for the Health Assessment of 
Mothers and Children of Salinas), a California birth cohort.

Methods: We measured PBDEs in maternal prenatal and child serum samples and examined the 
association of PBDE concentrations with children’s attention, motor functioning, and cognition at 
5 (n = 310) and 7 years of age (n = 323).

results: Maternal prenatal PBDE concentrations were associated with impaired attention as mea
sured by a continuous performance task at 5 years and maternal report at 5 and 7 years of age, with 
poorer fine motor coordination—particularly in the nondominant—at both age points, and with 
decrements in Verbal and FullScale IQ at 7 years. PBDE concentrations in children 7 years of age 
were significantly or marginally associated with concurrent teacher reports of attention problems 
and decrements in Processing Speed, Perceptual Reasoning, Verbal Comprehension, and FullScale 
IQ. These associations were not altered by adjustment for birth weight, gestational age, or maternal 
thyroid hormone levels.

conclusions: Both prenatal and childhood PBDE exposures were associated with poorer atten
tion, fine motor coordination, and cognition in the CHAMACOS cohort of schoolage children. 
This study, the largest to date, contributes to growing evidence suggesting that PBDEs have adverse 
impacts on child neurobehavioral development.
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Polybrominated diphenyl ether (PBDEs) 
flame retardant chemicals, used in the man-
ufacture of furniture, infant products, and 
electronics, are ubiquitous in U.S. households 
(Sjödin et al. 2008). An unintended conse-
quence of California’s Technical Bulletin 
117 (TB 117)—a fire safety law promul-
gated in the 1970s which requires that fur-
niture, baby, and other household products 
resist open flame (California Department of 
Consumer Affairs 2000; Zota et al. 2008)—is 
that PBDE concentrations in California chil-
dren are now among the highest measured 
worldwide (Eskenazi et al. 2011). Until 2005, 
the predominant chemical flame retardant 
used to comply with TB 117 was pentaBDE 
(comprising congeners BDEs 47, 99, 100, 
and 153). Although pentaBDE was banned 
in California and phased out by the manufac-
turer in 2004, pentaBDEs continue to leach 
from older household items. Exposure is also 
perpetuated by decaBDEs, still used in many 
electronic products, which can break down 
into lower-brominated congeners (Noyes 
et al. 2011). Because PBDEs are semi volatile 
and not chemically bound to substrates, 
they migrate into house dust, placing young 

children, who crawl on the floor and exhibit 
frequent hand-to-mouth behaviors, at risk of 
higher exposures (Stapleton et al. 2008).

PBDEs are endocrine-disrupting com-
pounds with half-lives in humans ranging 
from 2 to 12 years (Geyer et al. 2004). Recent 
research suggests that PBDE exposures are 
associated with altered thyroid hormone levels 
in pregnant women (Chevrier et al. 2010) and 
infants (Herbstman et al. 2008), and nega-
tively associated with birth weight (Harley 
et al. 2011). Research also suggests possible 
neurotoxic effects of in utero and early child-
hood exposure to PBDEs (Chao et al. 2007; 
Gascon et al. 2011, 2012; Herbstman et al. 
2010; Hoffman et al. 2012; Roze et al. 2009). 
Herbstman et al. (2010) reported significant 
decrements in motor and mental develop-
ment at ages 1–6 years associated with in utero 
PBDE exposures in New York children 
(n = 100). In a study of 62 5- to 6-year-old 
Dutch children, Roze et al. (2009) reported 
that in utero exposure levels were negatively 
associated with fine motor coordination and 
sustained attention, although improved coor-
dination and visual perception and fewer 
internalizing and externalizing behaviors. 

Recently, Gascon et al. (2011) reported that 
4-year-old Spanish children with detectable 
blood concentrations of BDE-47 were sig-
nificantly more likely to demonstrate atten-
tion symptoms [DSM-IV (Diagnostic and 
Statistical Manual of Mental Disorders, 4th 
ed.) (American Psychiatric Association 1994) 
scores > 80th percentile] than less-exposed 
peers, but not motor or cognitive deficits. 
Cord blood BDE-47 concentrations were not 
associated with any neurobehavioral param-
eters at 4 years of age. Hoffman et al. (2012) 
found a positive association between breast 
milk levels of BDEs 47, 99, and 100 and 
externalizing behaviors, specifically activity/
impulsivity behaviors in 220 30-month-olds.

In this analysis, we examined the relation-
ship of prenatal maternal and child PBDE 
concentrations with attention, cognition, and 
motor development in California children at 
5 and 7 years of age.

Methods
The Center for the Health Assessment 
of Mothers and Children of Sal inas 
(CHAMACOS) is a longitudinal birth cohort 
study of predominantly Mexican-American 
families in California’s Salinas Valley. Detailed 
methods for CHAMACOS are published 
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elsewhere (Eskenazi et al. 2004, 2006). Eligible 
pregnant women (≥ 18 years old, < 20 weeks 
gestation, Spanish- or English-speaking, quali-
fying for low-income health insurance, and 
planning to deliver at the public hospital) were 
recruited between October 1999 and October 
2000 from community clinics. The cohort 
included 601 women, 526 of whom delivered 
live-born singletons.

Women were interviewed twice dur-
ing pregnancy (at ~ 13 and 26 weeks ges-
tation), after delivery, and when children 
were 6 months old, and 1, 2, 3.5, 5, and 
7 years old. Mothers completed the Peabody 
Picture Vocabulary Test (PPVT) or Test de 
Vocabulario en Imágenes Peabody (TVIP) 
of verbal intelligence (Dunn and Dunn 
1981) at the 6-month visit and the Center 
for Epidemiologic Studies Depression Scale 
(CES-D) (Radloff 1977) at the 1-year visit. 
Age-appropriate versions of the HOME 
(Home Observation for Measurement of 
the Environment) survey were completed at 
most postdelivery visits (Caldwell and Bradley 
1984). Birth weight and gestational duration 
were abstracted from medical records.

Neurobehavioral assessments were per-
formed by bilingual psychometricians, and 
children were assessed in their dominant lan-
guage. A total of 310 children were assessed 
at 5 years (mean = 60.0 ± 2.6 months) and 
323 at 7 years (85.2 ± 2.9 months). The 
present analysis excludes four children with 
autism, Down syndrome, cerebral palsy/ 
hydrocephalus, or deafness and 63 children 
who lacked PBDE measurements.

Compared with children in the cohort 
who were not followed, children included in 
the present analyses were more likely to be 
female and born full term, with mothers who 
were older, breastfed longer, and were less 
likely to smoke or drink during pregnancy 
(data not shown). They did not differ accord-
ing to other sociodemographic characteristics 
or by their maternal prenatal PBDE levels 
[median = 24.9 ng/g lipid; interquartile range 
(IQR) 14.0–42.1] for those followed versus 
23.8 ng/g lipid (IQR = 14.9–41.3) for those 
not followed].

Mothers provided written informed 
consent at both visits, and children pro-
vided verbal assent at 7 years of age. Study 
activities were approved by the University of 
California at Berkeley (UC) Committee for 
the Protection of Human Subjects. A technical 
assistance agreement was established between 
the Division of Laboratory Sciences at the 
National Center for Environmental Health, 
Centers for Disease Control and Prevention 
(CDC), and UC Berkeley.

Attention. At the 5-year visit, moth-
ers completed the Child Behavior Checklist 
(CBCL)/1.5–5 (CBCL) (Achenbach and 
Rescorla 2000). We analyzed two subscales 

as continuous raw scores: the Attention 
Problems scale and the DSM-IV–oriented 
Attention Deficit/Hyperactivity Disorder 
(ADHD) Problems scale. We also analyzed a 
“borderline clinical range” (≥ 93rd percentile 
in the standardization sample) indicator vari-
able for each scale (Achenbach and Rescorla 
2000). In addition, children were assessed on 
the Conners’ Kiddie Continuous Performance 
Test (K-CPT) (Conners and Staff 2001), 
a 7-min computerized vigilance task that 
assesses reaction time, accuracy, and impulse 
control. We determined continuous T-scores 
(standardized to a nonclinical population) for 
errors of commission, errors of omission, and 
hit reaction time (Conners and Staff 2001). 
We also examined the continuous ADHD 
Confidence Index score, which indicates the 
probability that children are correctly classi-
fied as having clinical ADHD, and a binary 
variable indicating a Confidence Index score 
≥ 70th percentile.

At child’s age 7 years, mothers and 
teachers completed the Conners’ ADHD/
DSM-IV Scales (CADS) (Conners 2001) 
and the Behavior Assessment System for 
Children, 2nd edition (BASC) (Reynolds 
and Kamphaus 2004). CADS data from four 
subscales (Conners ADHD index score, and 
DSM-IV–based Inattentive, Hyperactive/
Impulsive, and Total ADHD scores) were 
analyzed both as continuous, standardized 
scores (T-scores; mean ± SD = 50 ± 10) and 
as a binary variable indicating scores in the 
“Moderately” or “Markedly Atypical” range 
(T-score ≥ 65) (Conners 2001). BASC data 
from Hyperactivity and Attention Problems 
subscales were analyzed as standardized 
T-scores and as a binary “at-risk” or “clinically 
significant” variable (T-score ≥ 60) (Reynolds 
and Kamphaus 2004).

Motor function. At ages 5 and 7 years, 
children’s gross motor skills were assessed 
using select subscales of the McCarthy Scales 
of Children’s Abilities (McCarthy 1972). 
Their fine motor dexterity was assessed with 
a pegboard test (Wide Range Assessment of 
Visual Motor Ability; WRAVMA) (Adams 
and Sheslow 1995) (age-standardized 
mean = 100 ± 15) and with a finger-tapping 
task [at 5 years: Behavioral Assessment and 
Research System (BARS) (Rohlman et al. 
2003); and at 7 years: Reitan Neuropsychology 
Laboratory (Tucson, AZ)]. We standard-
ized McCarthy gross motor and finger tap 
scores within our study population (z-scores, 
mean = 0 ± 1).

Cognitive functioning. At 5 years of age, 
children completed tests of receptive verbal 
intelligence in both English and Spanish using 
the PPVT and TVIP, respectively (Dunn and 
Dunn 1981). We analyzed children’s continu-
ous standardized scores (mean = 100 ± 15) 
in their language of best performance. We 

assessed children’s performance intelligence 
(PIQ) with the Wechsler Preschool and 
Primary Scale of Intelligence, 3rd edition 
(WPPSI-III) (mean = 100 ± 15).

At age 7 years, children were assessed on 
four subdomains of the Wechsler Intelligence 
Scale for Children–Fourth Edition (WISC-IV) 
(Wechsler 2003): Verbal Comprehension, 
Perceptual Reasoning, Working Memory, 
and Processing Speed. A Full-Scale IQ was 
also calculated (mean = 100 ± 15 for the Full-
Scale IQ and all components).

Other questions. Mothers were also asked 
“Has a doctor, nurse, psychologist or teacher 
ever told you that your child might have 
1) attention problems? or 2) learning prob-
lems?” Teachers were asked “Do you have 
any specific concerns about this student (in 
terms of) 1) emotional problems, 2) behav-
ioral problems, or 3) learning problems?” 

PBDE exposure assessment. Blood samples 
were collected by venipuncture from mothers 
during pregnancy (mean = 26.7 ± 2.6 weeks 
gestation, n = 219) or at delivery (n = 60), and 
from children at the 7-year visit (n = 272). 
PBDE serum levels in women with data at 
both time points were very strongly corre-
lated (Pearson r ≥ 0.98, p < 0.001)]. Samples 
were immediately processed and stored at 
–80oC until shipment on dry ice to the CDC 
(Atlanta, GA). Samples were analyzed at CDC 
for 10 congeners (BDEs 17, 28, 47, 66, 85, 
99, 100, 153, 154, and 183) using gas chro-
matography isotope dilution high-resolution 
mass spectrometry (Sjödin et al. 2004). PBDE 
concentrations are expressed on a serum lipid 
basis (nanograms per gram lipids). Total 
serum lipid concentrations were determined 
based on the measurement of triglycerides 
and total cholesterol using standard enzymatic 
methods (Roche Chemicals, Indianapolis, 
IN) (Phillips et al. 1989). The limits of detec-
tion (LODs) for BDE-47 ranged from 0.3 to 
2.6 ng/g lipids for maternal samples, and 0.4 
to 0.8 ng/g lipids for child samples. For all 
other congeners, LODs ranged between 0.2 
and 0.7 ng/g lipids for maternal and 0.3 and 
5.6 ng/g lipids for child samples, respectively. 
Quality control samples (blanks and spikes) 
were included in each run.

We used the sum of BDEs 47, 99, 100, 
and 153 congeners as our primary exposure 
measure. Values < LOD were assigned the 
machine-read value if a signal was detected. 
If not, all concentration levels < LOD were 
imputed at random based on a log-normal 
probability distribution using maximum like-
lihood estimation (Lubin et al. 2004).

We assessed maternal exposure to organo-
phosphate (OP) insecticides as measured 
by dialkyl phosphate (DAP) metabolites in 
maternal urine (at 13 and 26 weeks gestation), 
using an isotope dilution gas chromatography-
tandem mass spectrometry method (Bradman 
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et al. 2005; Bravo et al. 2002); lead in mater-
nal prenatal and cord blood samples, using 
graphite furnace atomic absorption spectro-
photometry; polychlorinated biphenyls (PCBs) 
in maternal serum using high-resolution gas 
chromatography/high-resolution mass spec-
trometry with isotope dilution quantification 
(Barr et al. 2003); and maternal thyroid stim-
ulating hormone (TSH; using immunochemi-
luminometric assay) and free thyroxine (T4; 
using direct equilibrium dialysis followed by 
radioimmunoassay) (Bayer ADVIA Centaur 
system; Siemens Healthcare Diagnostics, 
Deerfield, IL) at 26 weeks gestation (Chevrier 
et al. 2010; Nelson and Tomei 1988).

Data analysis. PBDE levels were expressed 
on the log10 scale. To determine the shape of 
the dose–response function, we ran generalized 
additive models using cubic splines. If non-
linearity was detected (p < 0.10), additional 
models were run with categorized PBDE con-
centrations (quartiles). We re-ran all final mod-
els with PBDE concentrations expressed on a 
serum basis (picograms per gram serum) with 
total serum lipids as a covariate. We also ran 
models with the sum of all 10 PBDE congeners; 
individually for each of the four primary conge-
ners (47, 99, 100, and 153); and excluding out-
liers (defined as being ≥ 3.5 SD away from the 
mean for log10 PBDEs or the outcome).

Variables were identified as potential 
confounders based on their relationship to 
neurodevelopment. We examined the fol-
lowing [see Supplemental Material, Table S3 
for categories (http://dx.doi.org/10.1289/
ehp.1205597)]: maternal age, education, 
years in the United States, marital status, work 
outside the home, use of alcohol and tobacco 
during pregnancy, depression (CES-D), par-
ity, and PPVT or TVIP score; housing den-
sity, household poverty, pregnancy exposure 
to environmental tobacco smoke, number of 
children in the home, father’s presence in the 
home, and HOME score at 6 months and 
7 years; preschool and out-of-home child care 
attendance; psychometrician, location, and 
language of assessment; and child sex, birth 
weight, preterm delivery status, and handed-
ness (motor outcomes only). Missing values 
(< 10%) for covariates were imputed by ran-
domly selecting a value from the dataset.

We built separate models for attention, 
cognition, and motor outcomes, and used 
the same model for all outcomes within a cat-
egory. In addition to child’s sex and months 
of age (continuous), final models included all 
covariates that changed the coefficient for the 
main exposure and any outcome within the 
group by > 10%. The covariates maintained 
in the models are listed in the footnote of the 
respective tables.

For sensitivity analyses, we adjusted for 
birth weight, gestational age at birth, maternal 
thyroid hormone (TSH and free T4), DAPs, 

lead, and PCBs in separate models (Chevrier 
et al. 2010; Harley et al. 2011). We evaluated 
effect modification by child sex. In addition, 
we included maternal and child PBDE lev-
els in the same models, although doing so 
reduced the sample size (n = 214).

Main effects were considered statistically 
significant with p < 0.05 based on two-tailed 
tests, and interactions were considered sig-
nificant if p < 0.10. All analyses were con-
ducted with STATA version 10.1 (StataCorp, 
College Station, TX).

Results
For both mothers and children, BDE con-
geners 47, 99, 100, and 153 had detection 
frequencies > 97% and dominated the total 
measure of concentration, with BDE-47 in 
the highest concentration [for maternal and 
child measures, see Supplemental Material, 
Tables S1 and S2, respectively (http://dx.doi.
org/10.1289/ehp.1205597)]. Children’s 
PBDE levels were more than three times 
higher than the mothers’ for the sum of four 
congeners, and detection frequencies for most 
other congeners were also substantially higher 
in children (Bradman et al. 2012; Castorina 
et al. 2011; Eskenazi et al. 2011). The cor-
relation between maternal and child ΣPBDE 
levels was 0.27 (p < 0.001); the correlation 
for individual congeners ranged from 0.21 for 
BDE-99 to 0.30 for BDE-153. Supplemental 
Material, Table S3, presents the distribution 
of demographic characteristics for children 
in the study sample and the geometric means 
(GM) of maternal and child ΣPBDE concen-
trations by covariates. Supplemental Material, 
Table S4, summarizes neurobehavioral scores 
for the study population.

Correlations between reports by teachers 
and parents concerning attention at 7 years 
of age, and between measures of attention, 
cognition, and motor skills, were moderate. 
For example, correlations between mater-
nal and teacher report on the CADS ranged 
from r = 0.2–0.3 (p < 0.01). Similar mea-
sures of attention on the BASC and CADS 
within a reporter (mother/teacher) were more 
strongly correlated—for example, r = 0.5 to 
0.8, p < 0.001 for maternal report and r = 0.7 
to 0.8, p < 0.001 for teacher report. Maternal 
and teacher CADS scores were negatively 
correlated with WISC Full-Scale IQ scores 
(r = –0.2 to –0.3, p < 0.001). Motor skills out-
comes tended to be positively correlated with 
IQ scores (r = 0.1 to 0.4, several p < 0.001) 
and negatively correlated with attention out-
comes (r = –0.05 to –0.2, several p < 0.01) 
(data not shown).

Attention. At child age 5 years, maternal 
prenatal ΣPBDE concentrations (for the 4 
main congeners) were marginally associated 
(p < 0.10) with maternally reported CBCL 
scores above the 93rd percentile for attention 

problems [adjusted odds ratio (aOR) for a 
10-fold increase in ΣPBDE = 4.6; 95%CI: 
0.9, 24.5] [see Supplemental Material, 
Table S5 (http://dx.doi.org/10.1289/
ehp.1205597)], and strongly associated with 
both errors of omission scores and ADHD 
Confidence Index scores on the K-CPT 
(Table 1). Quartile categorization suggested 
that both errors of omission and the ADHD 
Confidence Index were primarily elevated in 
children with mothers in the highest quartile 
of ΣPBDE exposure (> 42 ng/g) (Figure 1).

At child age 7 years, maternal ΣPBDE 
exposure was associated with maternally 
reported ADHD Index scores on the CADS 
(β = 2.9; 95% CI: 0.7, 5.2), DSM-IV Total 
scores (β = 2.6; 95% CI: 0.2, 5.0), and 
DSM-IV Inattention scale scores (β = 2.2; 
95% CI: 0.0, 4.5) (Table 1). Although there 
was evidence of nonlinearity for the DSM 
measures, quartile categorization showed no 
clear trends (Figure 1). Maternal exposure 
was also related to somewhat higher odds of 
a mother having been told that her child had 
attention problems (aOR = 2.3; 95% CI: 0.9, 
5.8), and to teacher reports of child behav-
ior problems (aOR = 2.5; 95% CI: 1.1, 6.0) 
[see Supplemental Material, Table S5 (http://
dx.doi.org/10.1289/ehp.1205597)]. However, 
there were no associations between maternal 
ΣPBDE and teacher ratings on the CADS or 
BASC, or maternal ratings on the BASC, for 
continuous or dichotomous outcomes.

By contrast, child PBDE concentrations 
were associated with reports of attention prob-
lems from teachers, but not from mothers. 
Specifically, child ΣPBDEs were associated 
with more adverse teacher reports on CADS 
ADHD Index, CADS DSM-IV Total, CADS 
DSM-IV Inattentive, BASC Hyperactivity, 
and BASC Attention Problems scales [Table 1; 
see also Supplemental Material, Table S5 
(http://dx.doi.org/10.1289/ehp.1205597)]. 
Associations were particularly pronounced for 
some of the dichotomous outcomes: Every 
10-fold increase in child ΣPBDE level was asso-
ciated with 4.5 and 5.5 times higher odds of 
the child being rated by the teacher as being in 
the “moderately or markedly atypical” range on 
CADS DSM-IV Hyperactive/Impulsive sub-
scale (95% CI: 1.2, 16.6) and DSM-IV Total 
subscale (95% CI: 1.5, 20.3), respectively (see 
Supplemental Material, Table S5).

Motor function. We observed little evidence 
of association between either maternal or child 
ΣPBDE serum concentrations and gross motor 
performance on McCarthy scales (Table 2). 
However, maternal ΣPBDEs were related to 
poorer performance on the WRAVMA peg-
board at both 5 and 7 years, particularly for 
the nondominant hand. For the 5-year-olds, 
this relationship was observed primarily for 
the nondominant hand among boys (boys: 
β = –12.1; 95% CI: –19.4, –4.7; girls: β = 0.8; 

http://dx.doi.org/10.1289/ehp.1205597)]:
http://dx.doi.org/10.1289/ehp.1205597)]:
http://dx.doi.org/10.1289/ehp.1205597)]
http://dx.doi.org/10.1289/ehp.1205597)]
http://dx.doi.org/10.1289/ehp.1205597)]
http://dx.doi.org/10.1289/ehp.1205597)]
http://dx.doi.org/10.1289/ehp.1205597)]
http://dx.doi.org/10.1289/ehp.1205597)]
http://dx.doi.org/10.1289/ehp.1205597)]
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95% CI: –6.8, 8.5; pinteraction = 0.09), whereas 
at age 7, it was seen mainly in the domi-
nant hand in girls (boys: β = –2.7; 95% CI: 
–10.8, 5.4; girls β = –8.1; 95% CI: –16.3, 0.1; 
pinteraction = 0.08). Associations between mater-
nal ΣPBDEs and pegboard performance at 

7 years showed evidence of nonlinearity, with 
nonsignificantly poorer performance in chil-
dren of mothers in the highest quartile of expo-
sure (Figure 1). At 5 but not 7 years of age, 
maternal ΣPBDEs were also inversely associ-
ated with dominant-hand finger taps (Table 2).

Child ΣPBDEs were marginally related 
to nondominant hand pegboard performance 
at age 7 years, but not with other motor 
 outcomes.

Cognitive functioning. We observed 
no associations between maternal ΣPBDE 
concentrations and child PPVT/TVIP or 
WPPSI Performance IQ scores at age 5 years 
(Table 3). However, at age 7 years, mater-
nal ΣPBDEs were associated with significant 
decrements in WISC Verbal Comprehension 
IQ, contributing to a somewhat lowered Full-
Scale IQ. Quartile analysis indicated that the 
association was primarily driven by a Verbal 
Comprehension IQ decrement in the highest 
quartile (β = –6.0; 95% CI: –11.3, –0.7; see 
Figure 1).

Children’s ΣPBDE concentrations were 
also related to Full-Scale IQ at age 7 years 
(β = –5.6; 95% CI: –10.8, –0.3), particularly 
with the Perceptual Reasoning IQ, Processing 
Speed IQ, and Verbal Comprehension IQ 
subscales (Table 3).

Sensitivity analyses. The above rela-
tionships were not confounded by mater-
nal lead, PCB, or OP pesticide exposures, 
or substantially altered when controlled (in 
separate models) for birth weight, gestational 
age, or prenatal thyroid hormones. Overall, 
associations with individual PBDE con-
geners or the sum of all 10 congeners [see 
Supplemental Maternal, Table S6 (http://
dx.doi.org/10.1289/ehp.1205597)] were 
generally consistent with results for the sum 
of the four major congeners. Depending on 
the outcome, there were between 0 and 4 
outliers with respect to either ΣPBDE con-
centrations or outcomes; excluding them did 
not substantively affect the results (data not 
shown). Except where noted, we did not find 
evidence of effect modification by child sex.

When both maternal and child ΣPBDE 
levels were entered into the same model 
(n = 214), associations were attenuated (data 
not shown) but child ΣPBDE levels were 
still associated with a borderline increase in 
teacher-reported scores for inattention on 
the BASC (β = 2.8; 95% CI: –0.2, 5.7) and 
maternal ΣPBDE levels were still associated 
with maternally-reported CADS DSM-IV 
Total scale scores (β = 2.6; 95% CI: –0.3, 
5.5), decreased Verbal Comprehension IQ 
(β = –5.2; 95% CI: –10.4, 0.1) and Full-
Scale IQ (β = –5.2; 95% CI: –10.6, 0.1), and 
lower nondominant hand pegboard scores 
(β = –6.5; 95% CI: –13.4, 0.3).

Discussion
In the present study, we report associations 
between mothers’ prenatal serum concentra-
tions of PBDEs and evidence of deficits in 
attention, fine motor coordination, and cogni-
tive functioning (particularly verbal compre-
hension) in their children at ages 5 and/or 7 

Table 1. Adjusted linear models for attention-related outcome scores in CHAMACOS children at 5 and 
7 years of age, per 10-fold increase in maternal prenatal and child ∑PBDE concentration (ng/g, lipid-
adjusted).

Outcome

Maternal ∑PBDEa,c Child ∑PBDEb,c

n β (95% CI) n β (95% CI)
Assessment of 5-year-olds

CBCL (raw score)
Attention problems 249 0.1 (–0.4, 0.6)
ADHD 249 0.4 (–0.5, 1.2)

K-CPT (T-score)
Errors of omission 246 5.8 (1.5, 10.1)**,#

Errors of commission 246 –0.5 (–3.7, 2.7)
ADHD Confidence Index 233 7.0 (1.6, 12.4)**,#

Assessment of 7-year-olds
Conner’s rating scale (CADS)–maternal report (T-score)

ADHD index 266 2.9 (0.7, 5.2)** 270 1.0 (–1.9, 3.9)
DSM-IV total scale 266 2.6 (0.2, 5.0)**,# 270 1.4 (–1.5, 4.4)

Inattentive subscale 266 2.2 (0.0, 4.5)**,# 270 0.7 (–2.1, 3.5)#
Hyperactive/Impulsive subscale 266 1.6 (–0.8, 4.1) 270 1.9 (–1.1, 5.0)

BASC-2–maternal report (T-score)
Hyperactivity scale 257 1.0 (–1.5, 3.6) 269 0.5 (–2.6, 3.5)
Attention Problems scale 257 0.5 (–1.2, 2.1) 269 –0.1 (–2.1, 1.9)

Conner’s rating scale (CADS)–teacher report (T-score)
ADHD index 213 2.4 (–1.4, 6.1) 219 4.6 (–0.4, 9.6)*
DSM-IV total scale 212 1.8 (–1.4, 5.0) 217 4.0 (–0.3, 8.3)*

Inattentive subscale 216 1.2 (–1.6, 3.9) 221 3.7 (0.1, 7.4)**
Hyperactive/Impulsive subscale 216 1.7 (–1.7, 5.0) 221 3.5 (–1.1, 8.0)

BASC-2–teacher report (T-score)
Hyperactivity scale 217 1.8 (–1.3, 4.9) 222 4.8 (0.5, 9.0)**
Attention Problems scale 257 0.7 (–1.3, 2.7) 222 2.9 (0.4, 5.5)**

aMaternal PBDE models control for child’s age at assessment, sex, maternal education, number of children in the home, 
and psychometrician (5-year assessments only). bChild PBDE models control for child’s age at assessment, sex, and 
parity. cSum of four PBDE congeners: BDEs 47, 99, 100, and 153. *p < 0.1. **p ≤ 0.05. #Digression from linearity at p < 0.10.

Figure 1. The point estimate and 95% CI for each quartile (Q) of maternal ∑PBDE concentration for out-
comes that showed overall associations and evidence of nonlinearity (at p < 0.1). The quartile ranges for 
maternal PBDEs were ≤ 14.4, 14.5–24.78, 24.8–41.97, and ≥ 42 ng/g lipid. Tests for trend come from models 
using PBDE quartile (1–4) as a continuous variable. 
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years. Despite only weak correlations between 
PBDE concentrations in maternal prenatal 
and child age 7 years blood, we found associa-
tions between cognition, motor function and 
attention with both maternal and child PBDE 
exposures. The observed results appeared to 
be independent of associations previously 
reported in this cohort between mater-
nal PBDEs and maternal thyroid hormone 
(Chevrier et al. 2010) or child birth weight 
(Harley et al. 2011) and between maternal 
organophosphate pesticide exposure and child 
neurobehavioral development (Bouchard et al. 
2011; Eskenazi et al. 2007; Marks et al. 2010). 
In addition, associations were not confounded 
by maternal lead or PCB levels, which were at 
low background levels.

This is the largest study to date on the 
potential neurodevelopmental impacts of 

PBDE exposures, and largely supports find-
ings from three smaller studies, including 
those with substantially lower PBDE serum 
levels (Gascon et al. 2011; Herbstman et al. 
2010; Hoffman et al. 2012; Roze et al. 2009). 
Our results are also similar to those reported 
between prenatal exposure to PCBs, which 
are chemically similar to PBDEs, and poorer 
attention and cognition or mental develop-
ment in children (Grandjean et al. 2001; 
Jacobson and Jacobson 2003; Koopman-
Esseboom et al. 1996; Rogan and Gladen 
1991; Sagiv et al. 2012).

A notable finding of our study is that, 
in addition to in utero exposures, childhood 
PBDE concentrations were also associated 
with neurodevelopmental deficits. Although 
we hypothesized a priori that prenatal expo-
sure would be more influential than postnatal 

exposure, the 7-year-olds’ average PBDE con-
centrations were much higher than those in 
their mothers during pregnancy; we attribute 
this difference in part to the lifetime residence 
of the children in California compared with 
mothers, many of whom were recent immi-
grants to California when their levels were 
 measured (Eskenazi et al. 2011).

In animal studies, PBDE exposure has 
been associated with increased death of cer-
ebellar granule cells, alterations in neuronal 
arachidonic acid release, and disruption of 
calcium homeostasis (Birnbaum and Staskal 
2004). Other potential mechanisms include 
perturbations of the cholinergic neurotrans-
mitter system, interference with cellular sig-
naling (Viberg et al. 2002a, 2002b, 2003), 
and, because of PBDEs’ structural similarity 
to T4, effects on maternal thyroid hormone 
necessary for normal infant brain develop-
ment (Darnerud et al. 2007; Richardson et al. 
2008; Zhou et al. 2002). However, maternal 
thyroid hormone did not appear to explain the 
associations observed in our study population, 
as adding it to models did not measurably 
change the results.

Important strengths of the current study 
include its longitudinal design and use of com-
prehensive neurobehavioral assessments, which 
incorporate input from multiple informants. 
Limitations of this study are that we did not 
observe consistency in associations with PBDEs 
across informants for measures of attention 
(although their responses were moderately cor-
related), and we constructed numerous sta-
tistical models (although performance across 
domains was also moderately correlated), which 
increased the possibility of a chance finding. 
We also did not measure some higher-bromi-
nated compounds (e.g., BDE-209), which are 
present in decaBDE. Another study, however, 
indicates that BDE-209 represents a very small 
fraction of total serum PBDE concentrations 
in a different population of California children 
(Rose et al. 2010).

Conclusions
This study’s finding of significant associa-
tions of both maternal prenatal and childhood 
PBDE exposures with poorer attention, fine 
motor coordination, and cognition in early 
school-age children contributes to the grow-
ing evidence of adverse associations between 
PBDE exposure and children’s neurobehav-
ioral development. Although these results are 
of particular concern for California children, 
they are also relevant to other locations, many 
of which contain products manufactured to 
meet California’s standards. With the phase-
out of pentaBDE, other flame retardants have 
been used to achieve compliance with TB 117. 
Additional research is needed to determine the 
potential child health consequences of these 
new chemical flame retardants.

Table 2. Adjusted linear models for motor function in CHAMACOS children at 5 and 7 years of age, per 
10-fold increase in maternal prenatal and child ∑PBDE concentration (ng/g, lipid-adjusted).

Outcome

Maternal ∑PBDEa,b Child ∑PBDEb,c

n β (95% CI) n β (95% CI)
Assessment of 5-year-olds

WRAVMA pegboard (standard score)
Dominant hand 254 –4.3 (–9.6, 1.0)
Nondominant hand 252 –5.6 (–10.8, –0.4)**,##

Finger tap (BARS z-score)
Dominant hand 234 –0.4 (–0.7, 0.0)**
Nondominant hand 234 –0.2 (–0.5, 0.1)

McCarthy (z-score)
Gross motor leg 241  0.0 (–0.3, 0.4)#
Bean bag catch 249 –0.1 (–0.4, 0.2)#

Assessment of 7-year-olds
WRAVMA pegboard (standard score)

Dominant hand 258 –5.4 (–11.1, 0.3)*,#,## 269 –5.4 (–12.0, 1.2)
Nondominant hand 258 –6.5 (–12.3, –0.7)**,# 268 –6.1 (–12.7, 0.4)*

Finger tap (BARS z-score)
Dominant hand 258  –0.1 (–0.4, 0.2)# 269 –0.2 (–0.6, 0.2)
Nondominant hand 258 –0.1 (–0.4, 0.2)# 268 –0.1 (–0.5, 0.2)

McCarthy (z-score)
Gross motor leg 255 –0.1 (–0.4, 0.1)# 266 –0.1 (–0.4, 0.2)#
Bean bag catch 258 0.0 (–0.3, 0.4) 268 0.0 (–0.4, 0.3)

aMaternal PBDE models control for child’s age, sex, home score at 6-month visit, father living with family, handedness, 
location of testing, whether the child attended preschool, maternal years in United States before giving birth, and psy-
chometrician (5-year assessment only). bSum of four PBDE congeners: BDEs 47, 99, 100, and 153. cChild PBDE models 
control for child’s age, sex, home score at 7-year visit, and location of testing. *p < 0.1. **p ≤ 0.05. #Digression from 
linearity at p < 0.10. ##Interaction with child sex at p < 0.10.

Table 3. Adjusted linear models for measures of cognition at 5 and 7 years of age (standard score), per 
10-fold increase in maternal prenatal and child ∑PBDE concentration (ng/g, lipid-adjusted).

Outcome

Maternal ∑PBDEa,b Child ∑PBDEb,c

n β (95% CI) n β (95% CI)
Assessment of 5-year-olds

PPVT 252 0.4 (–5.1, 5.9)
Performance IQ 256 0.9 (–3.5, 5.3)

Assessment of 7-year-olds
Full-Scale IQ 231 –4.7 (–9.4, 0.1)* 248 –5.6 (–10.8, –0.3)**

Verbal Comprehension IQ 258 –5.5 (–10.0, –1.0)**,# 269 –4.3 (–9.4, 0.8)*
Perceptual Reasoning IQ 258 –2.4 (–7.6, 2.9) 269 –5.2 (–11.1, 0.7)*
Working Memory IQ 231  –2.4 (–7.2, 2.3)# 249 –2.3 (–7.4, 2.8)
Processing Speed IQ 232 –2.3 (–6.8, 2.3) 249 –6.6 (–11.4, –1.8)**

aMaternal PBDE models control for child’s age, sex, home score at 6-month visit, language of assessment, and maternal 
years living in United States before giving birth. bSum of four PBDE congeners: BDEs 47, 99, 100, and 153. cChild PBDE 
models control for child’s age, sex, home score at 7-year visit, maternal PPVT, language of examination, maternal years 
living in the United States before giving birth, parity, and prenatal exposure to environmental tobacco smoke. *p < 0.1. 
**p ≤ 0.05. #Digression from linearity at p < 0.10.
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